Experimental and theoretical study of the optical and electrical properties of nanostructured indium tin oxide fabricated by oblique-angle deposition.

نویسندگان

  • Adam W Sood
  • David J Poxson
  • Frank W Mont
  • Sameer Chhajed
  • Jaehee Cho
  • E Fred Schubert
  • Roger E Welser
  • Nibir K Dhar
  • Ashok K Sood
چکیده

Oblique-angle deposition of indium tin oxide (ITO) is used to fabricate optical thin-film coatings with a porous, columnar nanostructure. Indium tin oxide is a material that is widely used in industrial applications because it is both optically transparent and electrically conductive. The ITO coatings are fabricated, using electron-beam evaporation, with a range of deposition angles between 0 degrees (normal incidence) and 80 degrees. As the deposition angle increases, we find that the porosity of the ITO film increases and the refractive index decreases. We measure the resistivity of the ITO film at each deposition angle, and find that as the porosity increases, the resistivity increases superlinearly. A new theoretical model is presented to describe the relationship between the ITO film's resistivity and its porosity. The model takes into account the columnar structure of the film, and agrees very well with the experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

The Effect of Tin Weight Fraction and Annealing Condition on Electrical and Optical Properties of ITO/TiO2 Nanostructured Film

   High transparent conductive indium tin oxide/titanium dioxide (ITO/TiO2) nanostructured thin film is prepared by sol-gel dip-coating technique. This method yielded monodisperse ITO nanoparticles with mean diameter of 12 nm. The atomic composition of the Sn within the ITO structure changed from 0-20 wt.%. Through controlled annealing temperature at 550 oC, the result...

متن کامل

Deposition and characterization of SnO2:Sb thin films fabricated by the spray pyrolysis method

In this study, thin films of transparent semiconductor tin oxide doped with antimony impurities on the glass substrates with different concentrations of antimony that have been prepared using spray pyrolysis method. The effects of different concentration of antimony on the structural, optical, and electrical properties of the thin films were investigated. Prepared layers were characterized by X...

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

Improved performance of organic light-emitting diodes with MoO3 interlayer by oblique angle deposition.

We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2012